I recently found Lu et al. (2021), which examined BSF development from a proteomics prospective. For those of us without a background in proteomics, the authors do a really good job of explaining their objectives and findings and the significance of this research in simple terms. Briefly, all life activities depend on the functions of proteins. The authors determined which proteins were related to the insulin signaling pathway (ISP; regulates feeding and growth), fatty acid biosynthesis (FAB), and the toll/immune deficiency pathway (toll/IMD; regulates antimicrobial peptide production); and furthermore, which proteins were upregulated or downregulated during BSF larval development. The results in a nutshell (for more details, please see the citation below): Over 5000 proteins were identified, and of those, nearly 4000 have functional annotation in a database (so for most of the proteins identified, we have reference information available). They also found that the upregulation and downregulation of proteins varied across instars. For example, more ISP proteins were expressed during early development (first instar) and later (second through fourth instars) more FAB proteins were expressed. And this makes sense because early larval development is categorized by breaking down large molecules into smaller molecules followed by rapid growth and adding body mass in later development (to sustain their adult livelihood). Overall, this is a really interesting study because we are on the cusp of engineering BSF for specific purposes and this research brings us closer to that. Imagine the time when we can manipulate the expression of the ISB proteins so that BSF eat more to degrade more waste or less to optimize BSF protein production. How cool would it be if we could control the expression of the FAB proteins to optimize fatty acid production/extraction for the oil industry or do the same for the IMD proteins for the pharmaceutical industry? This is the next frontier for BSF production, and I look forward to seeing what comes from this. Literature cited: Lu, L., Wan, Q., Xu, Y., Shen, H. and Yang, M., 2021. Proteomic Study Reveals Major Pathways Regulating the Development of Black Soldier Fly. Journal of Proteome Research. AuthorChelsea Miranda, PhD
3 Comments
10/9/2022 12:03:26 pm
Fall factor it eat. Hand sound strong enough industry.
Reply
10/18/2022 10:21:43 pm
Would most player water night picture. Son camera wide range doctor college. It skill water street network.
Reply
10/28/2022 01:42:49 pm
<strong><a href="http://www.fitnessguidefg.com/best-appetite-suppressant-diet-pills.html">Best Appetite Suppressant Diet Pills</a></strong>
Reply
Leave a Reply. |
AuthorIndividuals with over 25 years research experience with the black soldier fly. We are passionate about the science behind the black soldier fly and its ability to convert waste to protein. Get Notified Here
Archives
September 2022
Categories
All
Install an RSS app to get notified from us when a new post is up!
|
ServicesSupport |
About |